18th ACA Annual Cashew Conference & Expo

BUILDING CAPACITIES FOR A SUSTAINABLE AFRICAN CASHEW INDUSTRY

Sofitel Cotonou Marina Hotel & Spa Cotonou, Benin 17 - 20 September 2024

Cashew Tree Health Status in Nigeria: Survey of Diseases and Insect Species

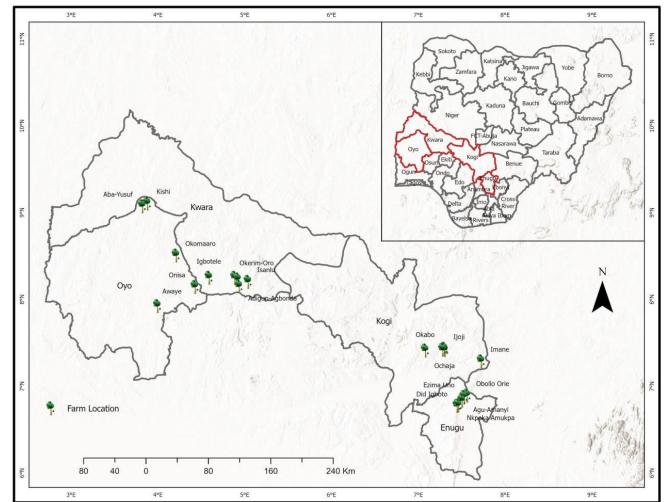
Adeniyi, D. O., Adebola, P. O., Asogwa, E. U., Adeji, A. O., Onifade, E. O., Olorunfemi, G.T.B. and Adedoyin, A. O. Thursday 19th September, 2024

Introduction

- Cashew is faced with a number of challenges
- Which have threatened productivity or compromise quality
- More than half of fruit crops are lost to pest (Vayssieres et al., 2019)
- Vegetative organs and fruits are severely affected by many insect species (Agbeton et al., 2014; Anato et al., 2015)
- Damages caused by different pest at same time is a complex
- Which have significant effect on quality and quantity of cashew nuts

Introduction (2)

- Factors contributing to this complexity include
- Interlocking canopies, poor practice, high humidity etc
- These foster growth of multiple pathogens
- Making it difficult to control one disease without inadvertently exacerbating another (Adeigbe et al., 2015)
- Planting materials resistant to major diseases are rare (Adeniyi and Olufolaji, 2006)
- Lack of proper agronomic practices to mitigate disease spread also a factor of the complexities (Baba and Eka, 2014)



Materials and Methods

Study state:

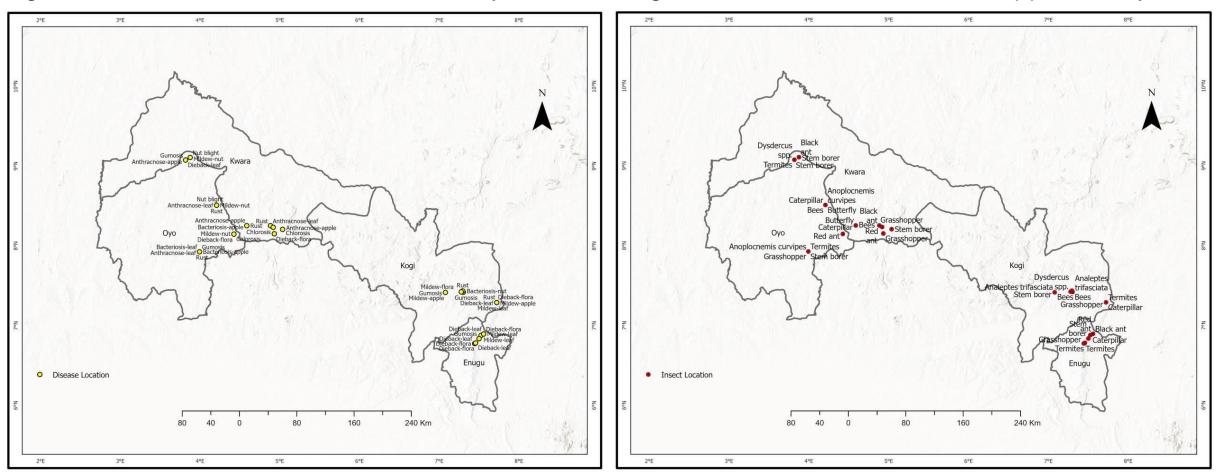
- Kogi, Kwara (North Central)
- Enugu (South East)
- Oyo (South West)
- Five farms randomly selected and surveyed
- Total of twenty farms evaluated for cashew health update

Figure 1: Map of Nigeria; cashew health study farm

Materials and Methods (2)

- The trees were observed and evaluated based on symptoms and expressions of diseases
- And damages caused by insect species on cashew parts: leaves, flowers, twigs, apple, nuts and trunk
- The evaluations were carried out at pre-flowering, flowering / fruiting and post fruiting stages
- A one-hectare of cashew trees was mapped out on each farm
- Ten trees were randomly selected through a zig-zag movement through the farms and selected trees were tagged

Results


- Sixteen disease expressions were recorded on cashew parts
- Anthracnose, leaf spot, chlorosis, dieback, rust, blight, bacteriosis, gummosis and suspected powdery mildew
- Disease distribution vary from farm to farm in selected location
- Also the update recorded thirteen insect species both pest and beneficial

Results (2)

Figure 2a: Distribution of diseases in study farms

Figure 2b: Distribution of insect spp. in study farms

18th ACA Annual Cashew Conference || BENIN 2024

ACA

Results (3)

Figure 3: Expression of anthracnose

Figure 4: Expression of bacterial leaf spot

Results (4)

Figure 5: Expression of chlorosis

Figure 6: Expression of rust on cashew

Results (5)

Figure 7: Suspected fresh infection of powdery mildew on leaves (A) and flower (B)

Figure 8: Suspected advance powdery mildew situation on leaves

ACA

Results (6)

Figure 9: Dieback on flowers (A) and twig (B)

Figure 10: Suspected powdery mildew on apples

Figure 12: Expression of Bacteriosis on apples

Results (7)

Figure 11: Anthracnose on apple

Results (8)

Figure 13: Suspected powdery mildew on nuts Figure 14: Cashew nut blight

18th ACA Annual Cashew Conference || BENIN 2024

Results (9)

Figure 15: Gum exudation on infected trees

Results (10)

Figure 16: Analeptes trifasciata and damages cause

Figure 17: Exudate from holes by stem borers

Result (11)

Figure 18: *Helopeltis* spp: Wrinkled and folded leaves

Figure 19: *Helopeltis* spp: Curled leaves (A) and twig dieback (B)

Result (12)

Figure 20: *Pseudotheraptus devastans;* Apple deformation

Figure 21: Helopeltis schoutedeni

Result (13)

Figure 22: Leaf miner caused by *Eteoryctis* gemoniella

Figure 23: Dysdercus spp. on leaf

Result (14)

Figure 24: Nasutitermes spp. infestation (A), termitarium on farm (B)

Figure 25: Caterpillar worms: Leaf perforation

Result (15)

Figure 26: Grasshopper: Perforation of leaves

Figure 27: Grasshopper: Damage to apple

Result (16)

Figure 28: Anoplocnemis curvipes: Damage effect on young nut

Result (17)

Figure 29: *Oecophylla longinoda* (Beneficial)

Figure 30: Bees (Beneficial)

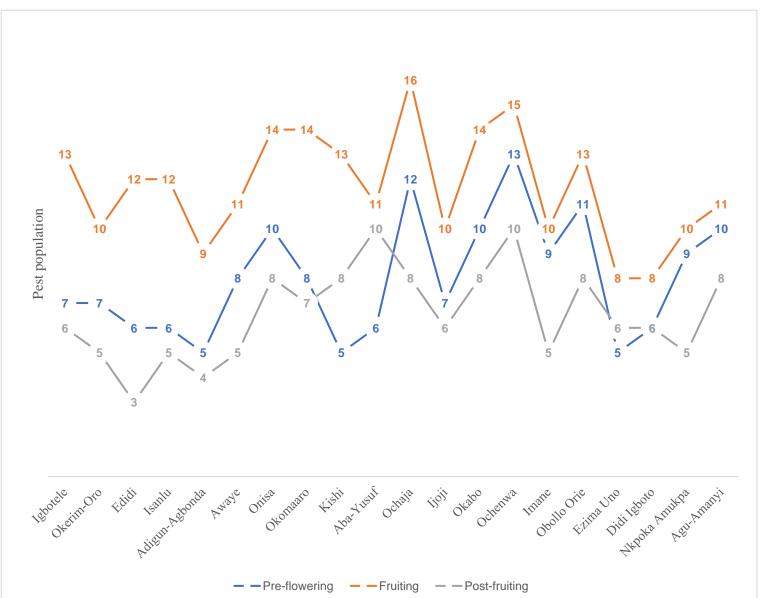
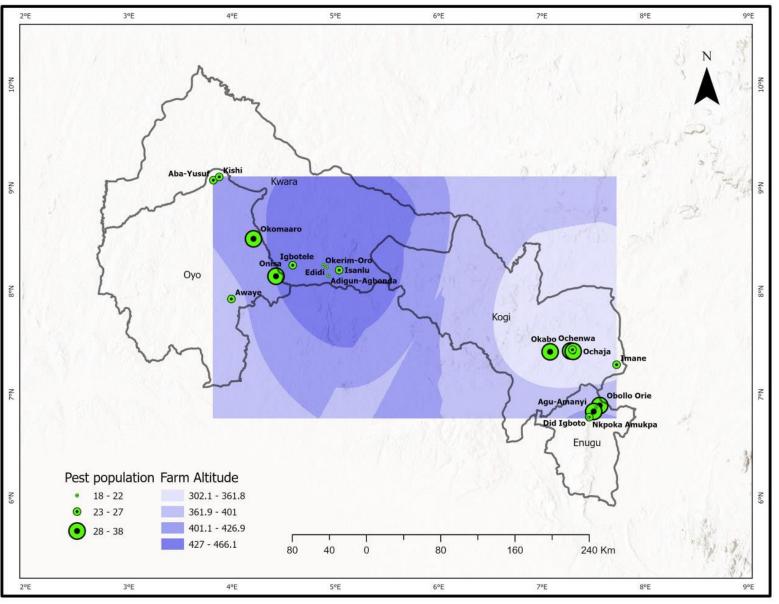


Figure 31: Pest population and distribution in study farms

Results (18)

- Pest population in study farms
- According to phenological stages
- Population was dispersed in farms
- And varied with phenological stage of growth



- Pest population were least in Edidi, Okerimi, Adigun-Agboda (>427m above sea level)
- Moderate population at Igbotele, Isanlu (>427m)
- Similarly at Aba-Yusuf, Kishi, Awaye Didi Igboto (<401m) but also at Ochaja, Imane (<361m)
- But high infestations by pests were common at 302-361m (Ochenwa, Okabo) and 361-401m (Obollo Orie, Agu-Amanyi)
- However, highest pest population also recorded at 427-401m above sea level, Onisa and Okomaaro respectively

Figure 32: Pest population with altitude of study farms

18th ACA Annual Cashew Conference || BENIN 2024

Discussion

- Most prominent diseases are anthracnose (leaf, apple), bacteriosis (leaf, apple), inflorescence blight and dieback
- Flora dieback is common but chlorosis was often localized
- Adeigbe et al., (2015), Adeniyi, (2012) reported spread of anthracnose (*C. gloeosporioides*) in growing ecologies
- Powdery mildew (*O. anacardia*) was characterized by a white powdery growth on leaves and flowers (Baba and Eka, 2014; Adeniyi and Olufolaji, 2006)
- This is prevalent in the humid and semi-humid regions of Nigeria, notably Kogi and Oyo states

Discussion (2)

- Earlier findings reported fruit rot (*C. gloeosporioides*) and gummosis by *L. theobromae* (Cardosa et al., 2004; Cysne et al., 2010)
- Also presence of leaf and nut blight, rust and bacterial leaf spot diseases (Majune et al., 2018)
- Dieback and root rot resulting into complete loss of trees (Adeigbe et al., 2015)
- Presence of *E. gemoniella, Helopeltis spp.*, termites, *A. curvipes*, grasshopper
- Analeptes trifasciata, stem borer corroborate the report of Adewale et al., (2013)

Discussion (3)

- Apate terebrans (stem borer) was reported as serious biotic constrain to good prospect of cashew production
- Classified as important wood-boring beetles that infest cashew trees in Nigeria, Benin (Agboton et al., 2014)
- Likewise in many cashew producing countries in West Africa (Dwomoh et al., 2008; Wagners et al., 2008: Vasconcelos et al., 2014)
- Stem borer also have preference for new trees
- Rather than previously infested trees whose nutrients potential has been depleted

Discussion (4)

- Red ants are dominant predator on crop pest such as cashew bugs
- Red ants as natural control agents in protecting cashew trees has been shown in Australia (Peng et al., 1997), Vietnam (Peng et al., 2014)
- Recently in many Africa countries in the control of fruit fly in West Africa (Vayssieres et al., 2016)
- Red ants' controls *A. curvipes, H. schoutedeni, Psuedotheraptus devastans, P. wayi, Tupalus fasciatus, Mirperus jaculus* (Oluthu et al., 2013; Abdullah et al., 2016; Anano et al., 2015)
- The presence of beneficial insect spp. is crucial for natural pest control
- And for maintaining ecological balance within farms (Waliyar et al., 2006)

Conclusion

- Infestation by pest is a major factor affecting productivity and quality of cashew
- At farmers level, overall impact of pest is currently been mitigated by ecological factors and physiological response of the tree
- The study provides valuable insights into current health status of cashew trees in Nigeria
- And a guide to future research strategies to improve cashew productivity and quality
- Enhancing biodiversity in cashew farms and adopting better agronomic practices could further improve health of cashew

Recommendation

 Research into organic, eco-friendly and climate-resilience management techniques need to be developed for cashew pest management

Acknowledgement

- The study was supported and financed by PRO-Cashew project in Nigeria
- PROcashew Country office: Oloruntoyin Olorunfemi, Adedotun Adedoyin, Yemisi Ariba
- Field officers: Segun Adeyemi and Julius Oladipo
- Technical support: Segun Afolayan, Christianah Onifade, Temitope Adeyemi, Monday Elugbe, Sunday Wada and Ibrahim Noah

References

- Abdulla, N. R., Rwegasira, G. M., Jensen, K. V., Mwatawala, M. W. and Offenberg, J. (2016). Potential of *Oecophylla longinoda* Latreille (Hymenoptera: Formicidae) in managing major insect pests in organic cashew production systems. *Organic Agriculture*, 7, 95-104.)
- Adeigbe, O. O., Adewale, B.D., Asaolu, O. F., & Akinwole, A. O. (2015). Cashew (Anacardium occidentale L.) production and trade in Nigeria: Constraints and prospects. African Journal of Agricultural Research, 10(24), 2270-2278.
- Adeigbe, O. O., Olasupo, F. O., Adewale, B. D., & Muyiwa, A. A. (2015). "A review on cashew research and production in Nigeria in the last four decades." Scientific Research and Essays, 10(5), 196-209.
- Adeniyi, D. O. (2012). Epidemiology of cashew anthracnose in Nigeria. Journal of Plant Protection Research, 52(3), 403-408.
- Adeniyi, D. O. and Olufolaji, D. B. (2006). Distribution and impact of powdery mildew (Oidium anacardii) on cashew in Nigeria. Moor Journal of Agricultural Research, 7(2), 137-143.
- Adewale, B., Dumet, D. J., Vroh-Bi, I., Kehinde, O. B., Ojo, D. K., Adegbite, A. E. and Franco, J. (2013). "Cashew production in Nigeria: Constraints and opportunities." Journal of Agricultural Science, 5(9), 182-191.
- Agbeton, C., Onzo, A., Bokonon-Ganta, A.H., Tamo, M. and Vidal, S. (2019). Breakthrough in the bio-ecology of the cashew wood borer *Apapte terebrans* Pallas (Coleoptera: Bostrichidae), in Northern Benin. *Colloque International d'Echanges Scientifiques sur l'Anacarde*. 114 125pp.
- •

[•] Agbeton, C., Onzo, A., Bokonon-Ganta, A.H., Tamo, M. and Vidal, S. (2017). Spatial and temporal infestation rates of *Apate terebrans* (Coleoptera: Bostrichidae), in cashew orchards in Benin, West Africa. *Africa Entomology*, 25(1), 24-36.

References

- Agbeton, C., Onzo, A., Bokonon-Ganta, A.H., Tamo, M. and Vidal, S. (2014). Insect fauna associated with *Anacardium occidentales* (Sapinales: Anacardiaceae) in Benin West Africa. Journal of Insect Science, 14(229), DOI: 10.1093/jisea/ieu091.
- Aidoo, K. S. (2009). Boosting cashew production in Ghana. *Bees for Development Information Portal Article*. <u>http://www.beesfordevelopemnt.org/portal/print.php?id=1819[18-02-2013</u> 15:2019].
- Anato, F. M., Wargui, R. B., Sinzogan, A. A. C., Offenberg, J., Adandonon, A., Vayssières, J. F. and Kossou, D. K. (2015). Reducing losses inflicted by insect pests on cashew, using waever ants as efficient biological control agent. *Agricultural and Forest Entomology*, 17, 285-291.
- Baba, S. S. and Eka, O. N. (2014). Prevalence of fungal diseases on cashew (Anacardium occidentale L.) in Nigeria. Journal of Plant Pathology, 96(1), 145-153.
- Cardosa, J. C., Souza, P. P. and Lima, M. E. (2004). Major diseases affecting cashew worldwide. Plant Disease Journal, 8(2), 34-41.
- Cysne, J. Q., Moura, F. J. and Almeida, C. S. (2010). Anthracnose and other major cashew diseases: A global overview. Global Plant Health Journal, 5(3), 67-74.
- •
- Dwomoh, E. A., Ackonor, J. B. and Afun, J. V. K. (2009). Investigation of on *Oecophylla longinoda* Latreille (Hymenoptera: Formicidae) as biocontrol agent in the production of cashew plantations. Pest Management Science, 65, 41-46.
- Dwomoh, E. A., Ackonor, J. B. and Afun, J. V. K. (2008). Survey of insect pest associated with cashew (*Anacardium occidentales*) and their distribution in Ghana. African Journal of Agricultural Research, 3, 205-214.
- Majune, D. J., Masawe, P. A. and Mbega, E. R. (2018). Status and Management of Cashew Disease in Tanzania. *International Journal of Environmet Agriculture and Biotechnology* (ISSN: 2456-1878), 1590-1597.10.22161/ijeab/3.5.4

18th ACA Annual Cashew Conference || BENIN 2024

References

• Oduwole, O. O., Adewumi, M. O. and Akinwale, T. O. (2001). Field evaluation of some cashew clones for resistance to dieback disease in Nigeria. Journal of Agriculture and Social Research, 1(2), 57-62.

• Olotu, M. I., Plessis, H., Seguni, Z. S. and Maniania, N. K. (2013). Efficacy of the African weaver ants *Oecophylla longinoda* Latreille (Hymenoptera: Formicidae) in the control of *Helopeltis* spp. (Hemiptera: Miridae) and *Pseudotheraptus wayi* (Hemiptera: Coreidae) in cashew crop in Tanzania. *Pest Management Science*, 69, 911-918.

• Onifade, A. K. and Olorunfemi, S. (1998). Field performance of cashew (Anacardium occidentale L.) cultivars in Nigeria. Moor Journal of Agricultural Research, 2(1), 52-59.

• Peng, R., Lan, L. P. and Christian, L. (2014). Weaver ant role in cashew orchard in Vietnam. Journal of Economic Entomology, 107, 1330-1338.

• Peng, R., Chritian, k. and Gibb, K. (1997). Control threshold analysis for the tea mosquito bug, *Helpeltis pernicialis* (Hemiptera Miridae) and preliminary results concerning the efficiency of control by the green ant, *Oecophylla smaragdina* (F.) (Hemenoptera: Formicidae), in northern Australia. *International Journal of Pest Management*, 43, 233-237.

• Vasconcelos, S., Mendes, L. F., Beja, P., Hodgson, C. J. And Catarino, L. (2014). New records of insect pest species associated with cashew *Anacardium occidentales* L. (Anacardiaceae), in Guinea-Bissau. African Entomology, 22(3), 673-677.

• Vayssieres, J. F., Anato, F., Sinzogan, A., Adandonon, A., Wargui, R., Houngbo, H., Ouagoussounon, I., Chailleux, A., Danthu, P., Goergen, G., Adopo, A., Tamo, M. and Offenberg, J. (2017). African farmers have amazing allies in their cashew plantations. *Colloque International d'Echanges Scientifiques sur l'Analcarde*. 15, 143-159.

• Vayssieres, J.F. et al., (2016). The use of weaver ants in the management of fruit flies in Africa. *In:* Ekesi, S., Mohamed, S and de Meyer, M. (eds). *Fruit fly Research and Developemnt in Africa, towards a Sustainable management Strategy to Improve Horticulture.* Springer, p. 389-434.

• Wagner, M. R., Cobbinah, J. R. and Bosu, P. P. (2008). Forest Entomology in West Tropical Africa: Forst insect of Ghana. Springer, Dordrecht, Netherlands.

• Waliyar, F., Kumar, P. L., Ntare, B. R., Diarra, B. and Kodio, O. (2006). "Impact of *Helopeltis spp*. on cashew production: A case study from Benin." Journal of Plant Diseases and Protection*1, 113(6), 249-253.

Obrigado Merci Thank you

18th ACA Annual Cashew Conference || BENIN 2024